EconPapers    
Economics at your fingertips  
 

A Compensation Model for Packet Loss Using Kalman Filter in Wireless Network Control Systems

Carlos Alexandre Gouvea da Silva () and Edson Leonardo dos Santos
Additional contact information
Carlos Alexandre Gouvea da Silva: Electrical Engineering Department, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
Edson Leonardo dos Santos: Federation of Industries of the State of Paraná (FIEP), Curitiba 80215-090, Brazil

Energies, 2023, vol. 16, issue 8, 1-15

Abstract: In Wireless Network Control System (WNCS), a study approach is relevant for the development and analysis of control strategies that provide the operation of dynamic systems. Among the real characteristics of the communication channels, a packet loss is one of the main deficiencies present in the transmission of data in a wireless network. For a dynamic system in the presence of losses, a filtering technique makes it possible to estimate system states using process output measurements and to mitigate a performance drop. It is important to study packet losses in Wireless Network Control Systems because packet loss can severely degrade the network performance. Wireless networks are particularly vulnerable to packet loss due to factors such as interference, fading and signal attenuation. The present work analyzed the behavior of a real WNCS plant at different levels of packet loss using the IEEE 802.15.4 protocol. Also, we propose a compensation model for packet loss using the Kalman filter. The packet loss process is based on a Gilbert-Elliot model and is compared with a Proportional-Integral-Derivative (PID) controller. The results show that by applying Kalman filters it is possible to improve the operation of the process in case of losses during data transmission. It was observed through the simulation that it is possible to reduce the error of the system output in relation to the reference in the presence of packet loss. For a loss ratio of 30%, the observed improvement in the system behavior with the use of the Kalman filter was 26.1%.

Keywords: control mesh; packet loss; system control network; WNCS; Kalman filter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3329/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3329/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3329-:d:1118982

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3329-:d:1118982