EconPapers    
Economics at your fingertips  
 

Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool

Yao Li, Liulin Yang (yangll@gxu.edu.cn) and Tianlu Luo
Additional contact information
Yao Li: College of Electrical Engineering, Guangxi University, Nanning 530004, China
Liulin Yang: College of Electrical Engineering, Guangxi University, Nanning 530004, China
Tianlu Luo: Guangxi Power Grid Co., Ltd., Nanning 530023, China

Energies, 2023, vol. 16, issue 8, 1-16

Abstract: Guangxi is a typical developing region on the southern coast of China. The current issues encountered in the region’s development are that fossil energy accounts for about 80% of the energy structure, fossil fuels are heavily dependent on imports, and the self-sufficiency rate of resources is only 32%. These challenges have created a disparity between the current regional development state and the country’s dual carbon target. Under the premise of comprehensively considering the multi-sectors of electricity, industry, transportation, and heating, this paper presents a study on the energy system transition towards low-carbon development for Guangxi in four steps. Firstly, to demonstrate EnergyPLAN’s capability in energy modeling, a reference scenario for Guangxi is created using official yearbook data from 2020. Then, a short-term scenario is formulated to analyze the development of Guangxi’s energy system during the 14th Five-Year Plan. Furthermore, two mid-term scenarios are established, revealing that Guangxi is anticipated to reach its carbon emission peak between 2025 and 2030. Finally, three long-term scenarios are proposed for Guangxi’s energy system for 2050. These scenarios encompass the expansion of photovoltaics, nuclear, and wind power in the electricity system and emission reduction policies in the industrial, transportation, and heating sectors. As a result, compared with the 2020REF scenario, Guangxi can achieve a carbon emission reduction exceeding 57% and the share of non-fossil energy consumption can reach about 70% in the 2050 scenarios, despite a substantial increase in energy consumption, which makes it possible to achieve carbon neutrality in 2060 and to establish an energy system with less than 20% of fossil energy consumption.

Keywords: EnergyPLAN; energy transition; energy modeling; clean energy; renewable energy; dual carbon goals (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3416/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3416/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3416-:d:1122534

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager (indexing@mdpi.com).

 
Page updated 2024-12-28
Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3416-:d:1122534