EconPapers    
Economics at your fingertips  
 

Designing UAV Charging Framework for Forest Area with Microgrid

Ming Yu ()
Additional contact information
Ming Yu: College of Engineering, Beijing Forestry University, Beijing 100083, China

Energies, 2024, vol. 17, issue 23, 1-19

Abstract: Unmanned aerial vehicles (UAVs) are suitable for forest fire monitoring, which is critical to prevent unexpected hazards. However, a lack of charging measures is the bottleneck restricting the development of surveillance drones in forest areas. This paper envisions a hierarchical charging framework of heterogeneous drones for forest fire surveillance based on a microgrid with renewable energy. Different replenishment methods of heterogeneous drones, as well as the coordination control strategy of the microgrid in a forest, which are designed to support continuous surveillance, are specified. To improve the transient stability as well as the capacity of fault ride-through in a forest microgrid for the multiple charging of fire surveillance drones, coordination control with a speed regulation strategy for a forest microgrid is proposed in which the substantial kinetic energy generated by the rotation of wind turbines is utilized to mitigate power fluctuations in a timely manner. Simulations are conducted under typical working conditions to verify the effectiveness of the method.

Keywords: forest microgrid; heterogeneous drones; forest fire surveillance; biomass energy; coordination control based on DC voltage; speed regulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/23/6109/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/23/6109/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:23:p:6109-:d:1536605

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6109-:d:1536605