Forecasting East and West Coast Gasoline Prices with Tree-Based Machine Learning Algorithms
Emmanouil Sofianos,
Emmanouil Zaganidis,
Theophilos Papadimitriou and
Periklis Gogas
Additional contact information
Emmanouil Zaganidis: Department of Economics, Democritus University of Thrace, 69100 Komotini, Greece
Energies, 2024, vol. 17, issue 6, 1-14
Abstract:
This study aims to forecast New York and Los Angeles gasoline spot prices on a daily frequency. The dataset includes gasoline prices and a big set of 128 other relevant variables spanning the period from 17 February 2004 to 26 March 2022. These variables were fed to three tree-based machine learning algorithms: decision trees, random forest, and XGBoost. Furthermore, a variable importance measure (VIM) technique was applied to identify and rank the most important explanatory variables. The optimal model, a trained random forest, achieves a mean absolute percent error (MAPE) in the out-of-sample of 3.23% for the New York and 3.78% for the Los Angeles gasoline spot prices. The first lag, AR (1), of gasoline is the most important variable in both markets; the top five variables are all energy-related. This paper can strengthen the understanding of price determinants and has the potential to inform strategic decisions and policy directions within the energy sector, making it a valuable asset for both industry practitioners and policymakers.
Keywords: gasoline; decision tree; random forest; XGBoost; machine learning; forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/6/1296/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/6/1296/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:6:p:1296-:d:1353373
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().