Numerical Simulation of Methane Production from Hydrates Induced by Different Depressurizing Approaches
Xuke Ruan,
Yongchen Song,
Jiafei Zhao,
Haifeng Liang,
Mingjun Yang and
Yanghui Li
Additional contact information
Xuke Ruan: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China
Yongchen Song: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China
Jiafei Zhao: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China
Haifeng Liang: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Mingjun Yang: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China
Yanghui Li: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China
Energies, 2012, vol. 5, issue 2, 1-21
Abstract:
Several studies have demonstrated that methane production from hydrate-bearing porous media by means of depressurization-induced dissociation can be a promising technique. In this study, a 2D axisymmetric model for simulating the gas production from hydrates by depressurization is developed to investigate the gas production behavior with different depressurizing approaches. The simulation results showed that the depressurization process with depressurizing range has significant influence on the final gas production. On the contrary, the depressurizing rate only affects the production lifetime. More amount of cumulative gas can be produced with a larger depressurization range or lowering the depressurizing rate for a certain depressurizing range. Through the comparison of the combined depressurization modes, the Class 2 (all the hydrate dissociation simulations are performed by reducing the initial system pressure with the same depressurizing range initially, then to continue the depressurization process conducted by different depressurizing rates and complete when the system pressure decreases to the atmospheric pressure) is much superior to the Class 1 (different depressurizing ranges are adopted in the initial period of the gas production process, when the pressure is reduced to the corresponding value of depressurization process at the different depressurizing range, the simulations are conducted at a certain depressurizing rate until the pressure reaches the atmospheric pressure) for a long and stable gas production process. The parameter analysis indicated that the gas production performance decreases and the period of stable production increases with the initial pressure for the case of depressurizing range. Additionally, for the case of depressurizing range, the better gas production performance is associated with higher ambient temperature for production process, and the effect of thermal conductivity on gas production performance can be negligible. However, for the case of depressurizing rate, the ambient temperature or thermal conductivity is dominant in different period of gas production process.
Keywords: methane hydrate; numerical simulation; depressurizing range; depressurizing rate (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.mdpi.com/1996-1073/5/2/438/pdf (application/pdf)
https://www.mdpi.com/1996-1073/5/2/438/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:5:y:2012:i:2:p:438-458:d:16266
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().