Hierarchical Communication Network Architectures for Offshore Wind Power Farms
Mohamed A. Ahmed and
Young-Chon Kim
Additional contact information
Mohamed A. Ahmed: Department of Computer Engineering, Chonbuk National University, Jeonju 561-756, Korea
Young-Chon Kim: Smart Grid Research Center, Chonbuk National University, Jeonju 561-756, Korea
Energies, 2014, vol. 7, issue 5, 1-18
Abstract:
Nowadays, large-scale wind power farms (WPFs) bring new challenges for both electric systems and communication networks. Communication networks are an essential part of WPFs because they provide real-time control and monitoring of wind turbines from a remote location (local control center). However, different wind turbine applications have different requirements in terms of data volume, latency, bandwidth, QoS, etc. This paper proposes a hierarchical communication network architecture that consist of a turbine area network (TAN), farm area network (FAN), and control area network (CAN) for offshore WPFs. The two types of offshore WPFs studied are small-scale WPFs close to the grid and medium-scale WPFs far from the grid. The wind turbines are modelled based on the logical nodes (LN) concepts of the IEC 61400-25 standard. To keep pace with current developments in wind turbine technology, the network design takes into account the extension of the LNs for both the wind turbine foundation and meteorological measurements. The proposed hierarchical communication network is based on Switched Ethernet. Servers at the control center are used to store and process the data received from the WPF. The network architecture is modelled and evaluated via OPNET. We investigated the end-to-end (ETE) delay for different WPF applications. The results are validated by comparing the amount of generated sensing data with that of received traffic at servers. The network performance is evaluated, analyzed and discussed in view of end-to-end (ETE) delay for different link bandwidths.
Keywords: wind turbine; wind power farm; communication network; IEC 61400-25; logical nodes; Ethernet; OPNET (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/7/5/3420/pdf (application/pdf)
https://www.mdpi.com/1996-1073/7/5/3420/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:7:y:2014:i:5:p:3420-3437:d:36338
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager (indexing@mdpi.com).