EconPapers    
Economics at your fingertips  
 

Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review

Jihye Kim, Kwanho Jeong, Myoung Jun Park, Ho Kyong Shon and Joon Ha Kim
Additional contact information
Jihye Kim: School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea
Kwanho Jeong: School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea
Myoung Jun Park: School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Post Box 129, Broadway, Sydney, NSW 2007, Australia
Ho Kyong Shon: School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Post Box 129, Broadway, Sydney, NSW 2007, Australia
Joon Ha Kim: School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea

Energies, 2015, vol. 8, issue 10, 1-25

Abstract: Global energy consumption has been highly dependent on fossil fuels which cause severe climate change and, therefore, the exploration of new technologies to produce effective renewable energy plays an important role in the world. Pressure-retarded osmosis (PRO) is one of the promising candidates to reduce the reliance on fossil fuels by harnessing energy from the salinity gradient between seawater and fresh water. In PRO, water is transported though a semi-permeable membrane from a low-concentrated feed solution to a high-concentrated draw solution. The increased volumetric water flow then runs a hydro-turbine to generate power. PRO technology has rapidly improved in recent years; however, the commercial-scale PRO plant is yet to be developed. In this context, recent developments on the PRO process are reviewed in terms of mathematical models, membrane modules, process designs, numerical works, and fouling and cleaning. In addition, the research requirements to accelerate PRO commercialization are discussed. It is expected that this article can help comprehensively understand the PRO process and thereby provide essential information to activate further research and development.

Keywords: pressure retarded osmosis; salinity gradient energy; osmotic power; PRO-hybrid process (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/8/10/11821/pdf (application/pdf)
https://www.mdpi.com/1996-1073/8/10/11821/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:8:y:2015:i:10:p:11821-11845:d:57417

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11821-11845:d:57417