Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks
Pol Olivella-Rosell,
Roberto Villafafila-Robles,
Andreas Sumper and
Joan Bergas-Jané
Additional contact information
Pol Olivella-Rosell: Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, EU d'Enginyeria Tècnica Industrial de Barcelona, Carrer Comte d'Urgell, 187-08036 Barcelona, Spain
Roberto Villafafila-Robles: Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, EU d'Enginyeria Tècnica Industrial de Barcelona, Carrer Comte d'Urgell, 187-08036 Barcelona, Spain
Andreas Sumper: Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, EU d'Enginyeria Tècnica Industrial de Barcelona, Carrer Comte d'Urgell, 187-08036 Barcelona, Spain
Joan Bergas-Jané: Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, ETS d'Enginyeria Industrial de Barcelona, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain
Energies, 2015, vol. 8, issue 5, 1-28
Abstract:
Electric Vehicles (EVs) have seen significant growth in sales recently and it is not clear how power systems will support the charging of a great number of vehicles. This paper proposes a methodology which allows the aggregated EV charging demand to be determined. The methodology applied to obtain the model is based on an agent-based approach to calculate the EV charging demand in a certain area. This model simulates each EV driver to consider its EV model characteristics, mobility needs, and charging processes required to reach its destination. This methodology also permits to consider social and economic variables. Furthermore, the model is stochastic, in order to consider the random pattern of some variables. The model is applied to Barcelona’s (Spain) mobility pattern and uses the 37-node IEEE test feeder adapted to common distribution grid characteristics from Barcelona. The corresponding grid impact is analyzed in terms of voltage drop and four charging strategies are compared. The case study indicates that the variability in scenarios without control is relevant, but not in scenarios with control. Moreover, the voltages do not reach the minimum voltage allowed, but the MV/LV substations could exceed their capacities. Finally, it is determined that all EVs can charge during the valley without any negative effect on the distribution grid. In conclusion, it is determined that the methodology presented allows the EV charging demand to be calculated, considering different variables, to obtain better accuracy in the results.
Keywords: electric vehicles charging; agent-based modelling and simulation; distribution network; coordinated charging; load flow analysis; stochastic modelling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
https://www.mdpi.com/1996-1073/8/5/4160/pdf (application/pdf)
https://www.mdpi.com/1996-1073/8/5/4160/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:8:y:2015:i:5:p:4160-4187:d:49393
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().