Numerical Study on Self-Starting Performance of Darrieus Vertical Axis Turbine for Tidal Stream Energy Conversion
Zhen Liu,
Hengliang Qu and
Hongda Shi
Additional contact information
Zhen Liu: Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China
Hengliang Qu: College of Engineering, Ocean University of China, Qingdao 266100, China
Hongda Shi: Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China
Energies, 2016, vol. 9, issue 10, 1-15
Abstract:
Self-starting performance is a key factor in the evaluation of a Darrieus straight-bladed vertical axis turbine. Most traditional studies have analyzed the turbine’s self-starting capability using the experimental and numerical data of the forced rotation. A 2D numerical model based on the computational fluid dynamics (CFD) software ANSYS-Fluent was developed to simulate the self-starting process of the rotor at constant incident water-flow velocities. The vertical-axis turbine (VAT) rotor is driven directly by the resultant torque generated by the water flow and system loads, including the friction and reverse loads of the generator. It is found that the incident flow velocity and the moment of inertia of the rotor have little effect on the averaged values of tip-speed ratios in the equilibrium stage under no-load conditions. In the system load calculations, four modes of the self-starting were found: stable equilibrium mode, unstable equilibrium mode, switch mode and halt mode. The dimensionless power coefficient in the simulations of passive rotation conditions is found to be, on average, 38% higher than those achieved in the simulations of forced rotation conditions.
Keywords: tidal stream energy; vertical axis turbine; Darrieus type; self-starting; numerical study (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/10/789/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/10/789/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:10:p:789-:d:79366
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().