EconPapers    
Economics at your fingertips  
 

A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

Feng Lu, Chunyu Jiang, Jinquan Huang, Yafan Wang and Chengxin You
Additional contact information
Feng Lu: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
Chunyu Jiang: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
Jinquan Huang: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
Yafan Wang: Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi 214063, Jiangsu, China
Chengxin You: Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi 214063, Jiangsu, China

Energies, 2016, vol. 9, issue 10, 1-22

Abstract: Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS) is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM) is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL) by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

Keywords: gas turbine; performance fault diagnosis; data fusion; extreme learning machine; evidence theory (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/10/828/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/10/828/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:10:p:828-:d:80617

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:828-:d:80617