Study on the Optimum Design Method of Heat Source Systems with Heat Storage Using a Genetic Algorithm
Min Gyung Yu and
Yujin Nam
Additional contact information
Min Gyung Yu: Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 609-735, Korea
Yujin Nam: Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 609-735, Korea
Energies, 2016, vol. 9, issue 10, 1-17
Abstract:
Recently, a heat source system utilizing a heat storage tank for energy savings in buildings was designed. A heat storage tank is an effective system for solving the qualitative and quantitative differences in the required building energy. On the other hand, the existing design process of a heat storage system is difficult to determine if the air-conditioning time is unclear, and the design in a real-working level is too inaccurate, causing oversizing and a high initial investment cost. This results in inefficient operation despite the introduction of an efficient system. Therefore, this study proposes an optimal design method of a heat source system using a thermal storage tank. To demonstrate the usefulness of the proposed design method, feasibility studies were conducted with the existing system designs. As a result, the optimal solution could reduce the initial cost by approximately 25.6% when following the conventional design process and it was approximately 40% lower than the real-working method. In conclusion, the conventional designs are inefficiently over-designed and the optimal design solution is superior. In this regard, the suggested optimal design method is efficient when designing a heat source system using a thermal storage tank.
Keywords: optimization; design method; heat source system; genetic algorithm; thermal storage tank (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/10/849/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/10/849/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:10:p:849-:d:81054
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().