EconPapers    
Economics at your fingertips  
 

Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity

Ikram Ullah, Wolfgang Gawlik and Peter Palensky
Additional contact information
Ikram Ullah: Energy Department, Complex Energy Systems, Austrian Institute of Technology GmbH, Department Electrical Sustainable Energy, Faculty Electrical Engineering, 1220 Wien, Austria
Wolfgang Gawlik: Faculty of Electrical Engineering and IT, Technical University Vienna, 1040 Wien, Austria
Peter Palensky: Department Electrical Sustainable Energy Faculty, Electrical Engineering, Mathematics and Computer Science, TU Delft, 2628 CD Delft, The Netherlands

Energies, 2016, vol. 9, issue 11, 1-20

Abstract: The increasing growth in power demand and the penetration of renewable distributed generations in competitive electricity market demands large and flexible capacity from the transmission grid to reduce transmission bottlenecks. The bottlenecks cause transmission congestion, reliability problems, restrict competition, and limit the maximum dispatch of low cost generations in the network. The electricity system requires efficient utilization of the current transmission capability to improve the Available Transfer Capability (ATC). To improve the ATC, power flow among the lines can be managed by using Flexible AC Transmission System (FACTS) devices as power flow controllers, which alter the parameters of power lines. It is important to place FACTS devices on suitable lines to vary the reactance for improving Total Transmission Capacity (TTC) of the network and provide flexibility in the power flow. In this paper a transmission network is analyzed based on line parameters variation to improve TTC of the interconnected system. Lines are selected for placing FACTS devices based on real power flow Performance Index (PI) sensitivity factors. TTC is computed using the Repeated Power Flow (RPF) method using the constraints of lines thermal limits, bus voltage limits and generator limits. The reactance of suitable lines, selected on the basis of PI sensitivity factors are changed to divert the power flow to other lines with enough transfer capacity available. The improvement of TTC using line reactance variation is demonstrated with three IEEE test systems with multi-area networks. The results show the variation of the selected lines’ reactance in improving TTC for all the test networks with defined contingency cases.

Keywords: Available Transfer Capability (ATC); PTDF; FACTS; real power flow Performance Index sensitivity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/11/936/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/11/936/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:11:p:936-:d:82621

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:936-:d:82621