Comparison of Optimized Control Strategies of a High-Speed Traction Machine with Five Phases and Bi-Harmonic Electromotive Force
Hussein Zahr,
Jinlin Gong,
Eric Semail and
Franck Scuiller
Additional contact information
Hussein Zahr: University Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697-L2EP -Laboratoire d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France
Jinlin Gong: Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Ministry of Education, Jinan 250061, China
Eric Semail: University Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697-L2EP -Laboratoire d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France
Franck Scuiller: Naval Academy Research Institute, Ecole Navale/Groupe des Ecoles du Poulmic - CC 600, 29240 Brest, France
Energies, 2016, vol. 9, issue 12, 1-19
Abstract:
The purpose of the paper is to present the potentialities in terms of the control of a new kind of PM synchronous machine. With five phases and electromotive forces whose first ( E 1 ) and third ( E 3 ) harmonics are of similar amplitude, the studied machine, so-called bi-harmonic, has properties that are interesting for traction machine payload. With three-phase machines, supplied by a mono-harmonic sinusoidal current, the weak number of freedom degrees limits the strategy of control for traction machines especially when voltage saturation occurs at high speeds. As the torque is managed for three-phase machines by a current with only one harmonic, flux weakening is necessary to increase speed when the voltage limitation is reached. The studied five-phase machine, thanks to the increase in the number of freedom degrees for control, aims to alleviate this fact. In this paper, three optimized control strategies are compared in terms of efficiency and associated torque/speed characteristics. These strategies take into account numerous constraints either from the supply (with limited voltage) or from the machine (with limited current densities and maximum acceptable copper, iron and permanent magnet losses). The obtained results prove the wide potentialities of such a kind of five-phase bi-harmonic machine in terms of control under constraints. It is thus shown that the classical Maximum Torque Per Ampere (MTPA) strategy developed for the three-phase machine is clearly not satisfying on the whole range of speed because of the presence of iron losses whose values can no more be neglected at high speeds. Two other strategies have been then proposed to be able to manage the compromises, at high speeds, between the high values of torque and efficiency under the constraints of admissible total losses either in the rotor or in the stator.
Keywords: five-phase machine; bi-harmonic rotor; control strategies; maximum torque per ampere; maximum torque per losses; flux weakening; traction drive; PM losses; iron losses; copper losses (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/12/952/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/12/952/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:12:p:952-:d:83761
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().