DC-Link Capacitor Voltage Regulation for Three-Phase Three-Level Inverter-Based Shunt Active Power Filter with Inverted Error Deviation Control
Yap Hoon,
Mohd Amran Mohd Radzi,
Mohd Khair Hassan and
Nashiren Farzilah Mailah
Additional contact information
Yap Hoon: Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
Mohd Amran Mohd Radzi: Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
Mohd Khair Hassan: Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
Nashiren Farzilah Mailah: Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
Energies, 2016, vol. 9, issue 7, 1-25
Abstract:
A new control technique known as inverted error deviation (IED) control is incorporated into the main DC-link capacitor voltage regulation algorithm of a three-level neutral-point diode clamped (NPC) inverter-based shunt active power filter (SAPF) to enhance its performance in overall DC-link voltage regulation so as to improve its harmonics mitigation performances. In the SAPF controller, DC-link capacitor voltage regulation algorithms with either the proportional-integral (PI) or fuzzy logic control (FLC) technique have played a significant role in maintaining a constant DC-link voltage across the DC-link capacitors. However, both techniques are mostly operated based on a direct voltage error manipulation approach which is insufficient to address the severe DC-link voltage deviation that occurs during dynamic-state conditions. As a result, the conventional algorithms perform poorly with large overshoot, undershoot, and slow response time. Therefore, the IED control technique is proposed to precisely address the DC-link voltage deviation. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and experimental implementation utilizing a TMS320F28335 Digital Signal Processor (DSP) are performed. Moreover, conventional algorithms with PI and FLC techniques are tested too for comparison purposes. Both simulation and experimental results are presented, confirming the improvement achieved by the proposed algorithm in terms of accuracy and dynamic response in comparison to the conventional algorithms.
Keywords: active power filter; current harmonics; fuzzy logic controller (FLC); inverted error deviation (IED); multilevel power converter; power electronics; power quality (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/7/533/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/7/533/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:7:p:533-:d:73739
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().