EconPapers    
Economics at your fingertips  
 

EMD-Based Feature Extraction for Power Quality Disturbance Classification Using Moments

Misael Lopez-Ramirez, Luis Ledesma-Carrillo, Eduardo Cabal-Yepez, Carlos Rodriguez-Donate, Homero Miranda-Vidales and Arturo Garcia-Perez
Additional contact information
Misael Lopez-Ramirez: Division de Ingenierias, Campus Irapuato-Salamanca, Universidad de Guanajuato/Carr. Salamanca-Valle km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36700, Guanajuato, Mexico
Luis Ledesma-Carrillo: Division de Ingenierias, Campus Irapuato-Salamanca, Universidad de Guanajuato/Carr. Salamanca-Valle km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36700, Guanajuato, Mexico
Eduardo Cabal-Yepez: Division de Ingenierias, Campus Irapuato-Salamanca, Universidad de Guanajuato/Carr. Salamanca-Valle km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36700, Guanajuato, Mexico
Carlos Rodriguez-Donate: Division de Ingenierias, Campus Irapuato-Salamanca, Universidad de Guanajuato/Carr. Salamanca-Valle km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36700, Guanajuato, Mexico
Homero Miranda-Vidales: Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 8, Zona Universitaria, San Luis Potosi 78290, Mexico
Arturo Garcia-Perez: Division de Ingenierias, Campus Irapuato-Salamanca, Universidad de Guanajuato/Carr. Salamanca-Valle km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36700, Guanajuato, Mexico

Energies, 2016, vol. 9, issue 7, 1-15

Abstract: In electric power systems, there are always power quality disturbances (PQDs). Usually, noise contamination interferes with their detection and classification. Common methods perform frequency or time-frequency analyses on the power distribution signal for detecting and classifying a limited number of PQDs with some difficulties at low signal-to-noise ratio (SNR). In this regard, recently proposed methodologies for PQD detection estimate several parameters and apply distinct signal processing techniques to improve the detection of PQD. In this work, a novel methodology that merges empirical mode decomposition (EMD), the moments of a random variable, and an artificial neural network (ANN) is proposed for detecting and classifying different PQD. The proposed method estimates skewness, kurtosis, and Shannon entropy from the EMD of one-phase voltage/current signal. Then, an ANN is in charge of classifying the input signal into one of nine different classes for PQD, receiving these parameters as inputs. The effectiveness of the proposed method was verified through computer simulations and experimentation with real data. Obtained results demonstrate its high effectiveness reaching an outstanding 100% of accuracy in detecting and classifying all treated PQD through a few number of parameters, outperforming most of previously proposed approaches.

Keywords: artificial neural networks; empirical mode decomposition; kurtosis; power quality disturbances; Shannon entropy; skewness (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/7/565/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/7/565/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:7:p:565-:d:74352

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:565-:d:74352