EconPapers    
Economics at your fingertips  
 

Exploring Reduction Potential of Carbon Intensity Based on Back Propagation Neural Network and Scenario Analysis: A Case of Beijing, China

Jinying Li, Jianfeng Shi and Jinchao Li
Additional contact information
Jinying Li: Department of Economics and Management, North China Electric Power University, Baoding 071003, China
Jianfeng Shi: Department of Economics and Management, North China Electric Power University, Baoding 071003, China
Jinchao Li: School of Economics and Management, North China Electric Power University, Beijing 102206, China

Energies, 2016, vol. 9, issue 8, 1-17

Abstract: Carbon emissions are the major cause of the global warming; therefore, the exploration of carbon emissions reduction potential is of great significance to reduce carbon emissions. This paper explores the potential of carbon intensity reduction in Beijing in 2020. Based on factors including economic growth, resident population growth, energy structure adjustment, industrial structure adjustment and technical progress, the paper sets 48 development scenarios during the years 2015–2020. Then, the back propagation (BP) neural network optimized by improved particle swarm optimization algorithm (IPSO) is used to calculate the carbon emissions and carbon intensity reduction potential under various scenarios for 2016 and 2020. Finally, the contribution of different factors to carbon intensity reduction is compared. The results indicate that Beijing could more than fulfill the 40%–45% reduction target for carbon intensity in 2020 in all of the scenarios. Furthermore, energy structure adjustment, industrial structure adjustment and technical progress can drive the decline in carbon intensity. However, the increase in the resident population hinders the decline in carbon intensity, and there is no clear relationship between economy and carbon intensity. On the basis of these findings, this paper puts forward relevant policy recommendations.

Keywords: carbon intensity; IPSO model; scenario analysis; Beijing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/8/615/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/8/615/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:8:p:615-:d:75325

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:615-:d:75325