A Brief Taxonomy of Hybrid Intelligence
Niccolo Pescetelli
Additional contact information
Niccolo Pescetelli: Department of Humanities and Social Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
Forecasting, 2021, vol. 3, issue 3, 1-11
Abstract:
As artificial intelligence becomes ubiquitous in our lives, so do the opportunities to combine machine and human intelligence to obtain more accurate and more resilient prediction models across a wide range of domains. Hybrid intelligence can be designed in many ways, depending on the role of the human and the algorithm in the hybrid system. This paper offers a brief taxonomy of hybrid intelligence, which describes possible relationships between human and machine intelligence for robust forecasting. In this taxonomy, biological intelligence represents one axis of variation, going from individual intelligence (one individual in isolation) to collective intelligence (several connected individuals). The second axis of variation represents increasingly sophisticated algorithms that can take into account more aspects of the forecasting system, from information to task to human problem-solvers. The novelty of the paper lies in the interpretation of recent studies in hybrid intelligence as precursors of a set of algorithms that are expected to be more prominent in the future. These algorithms promise to increase hybrid system’s resilience across a wide range of human errors and biases thanks to greater human-machine understanding. This work ends with a short overview for future research in this field.
Keywords: hybrid intelligence; collective intelligence; AI; forecasting (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-9394/3/3/39/pdf (application/pdf)
https://www.mdpi.com/2571-9394/3/3/39/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:3:y:2021:i:3:p:39-643:d:627213
Access Statistics for this article
Forecasting is currently edited by Ms. Joss Chen
More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().