EconPapers    
Economics at your fingertips  
 

Macroeconomic Predictions Using Payments Data and Machine Learning

James Chapman and Ajit Desai

Forecasting, 2023, vol. 5, issue 4, 1-32

Abstract: This paper assesses the usefulness of comprehensive payments data for macroeconomic predictions in Canada. Specifically, we evaluate which type of payments data are useful, when they are useful, why they are useful, and whether machine learning (ML) models enhance their predictive value. We find payments data with a factor model can help improve accuracy up to 25% in predicting GDP, retail, and wholesale sales; and nonlinear ML models can further improve the accuracy up to 20%. Furthermore, we find the retail payments data are more useful than the data from the wholesale system; and they add more value during crisis and at the nowcasting horizon due to the timeliness. The contribution of the payments data and ML models is small and linear during low and normal economic growth periods. However, their contribution is large, asymmetrical, and nonlinear during crises such as COVID-19. Moreover, we propose a cross-validation approach to mitigate overfitting and use tools to overcome interpretability in the ML models to improve their effectiveness for policy use.

Keywords: nowcasting; payments data; machine learning; interpretability; overfitting (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2571-9394/5/4/36/pdf (application/pdf)
https://www.mdpi.com/2571-9394/5/4/36/ (text/html)

Related works:
Working Paper: Macroeconomic Predictions using Payments Data and Machine Learning (2022) Downloads
Working Paper: Macroeconomic Predictions Using Payments Data and Machine Learning (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:5:y:2023:i:4:p:36-683:d:1288660

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jforec:v:5:y:2023:i:4:p:36-683:d:1288660