EconPapers    
Economics at your fingertips  
 

Electric Drive with an Adaptive Controller and Wireless Communication System

Mateusz Malarczyk, Mateusz Zychlewicz, Radoslaw Stanislawski and Marcin Kaminski ()
Additional contact information
Mateusz Malarczyk: Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland
Mateusz Zychlewicz: Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland
Radoslaw Stanislawski: Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland
Marcin Kaminski: Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland

Future Internet, 2023, vol. 15, issue 2, 1-20

Abstract: In this paper, the problem of the remote control of electric drives with a complex mechanical structure is discussed. Oscillations of state variables and control precision are the main issues found in such applications. The article proposes a smart, IoT-enabled controller, which allows remote communication with a drive. To solve the problem of speed oscillations and to make the system robust to parameter uncertainty, an adaptive controller with two neural networks is designed. First, numerical tests are conducted in a Matlab/Simulink environment to examine the operation of the proposed control strategy. Afterwards, the obtained results are verified in a laboratory setup equipped with a 0.5 kW electric motor. Remote access is provided by a low-cost, ARM-based ESP32 microcontroller. Usually, virtual instruments used to communicate with remote devices require specific software, which may be expensive and pose compatibility problems. Therefore, the main contribution of the article is the creation of a low-cost, web-based Human-Machine Interface (HMI) with an asynchronous server utility provided by the ESP32 that allows remote control and data acquisition of electric drive state variables.

Keywords: IoT; remote control; adaptive speed control; neural networks (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/15/2/49/pdf (application/pdf)
https://www.mdpi.com/1999-5903/15/2/49/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:15:y:2023:i:2:p:49-:d:1049192

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:49-:d:1049192