Measuring and Comparing Two Kinds of Rationalizable Opportunity Cost in Mixture Models
James Bland
Games, 2019, vol. 11, issue 1, 1-27
Abstract:
In experiments of decision-making under risk, structural mixture models allow us to take a menu of theories about decision-making to the data, estimating the fraction of people who behave according to each model. While studies using mixture models typically focus only on how prevalent each of these theories is in people’s decisions , they can also be used to assess how much better this menu of theories organizes people’s utility than does just one theory on its own. I develop a framework for calculating and comparing two kinds of rationalizable opportunity cost from these mixture models. The first is associated with model mis-classification: How much worse off is a decision-maker if they are forced to behave according to model A, when they are in fact a model B type? The second relates to the mixture model’s probabilistic choice rule: How much worse off are subjects because they make probabilistic, rather than deterministic, choices? If the first quantity dominates, then one can conclude that model a constitutes an economically significant departure from model B in the utility domain. On the other hand, if the second cost dominates, then models a and B have similar utility implications. I demonstrate this framework on data from an existing experiment on decision-making under risk.
Keywords: mixture model; expected utility; rank dependent expected utility; rationalizable opportunity cost; absolute welfare cost (search for similar items in EconPapers)
JEL-codes: C C7 C70 C71 C72 C73 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-4336/11/1/1/pdf (application/pdf)
https://www.mdpi.com/2073-4336/11/1/1/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jgames:v:11:y:2019:i:1:p:1-:d:299551
Access Statistics for this article
Games is currently edited by Ms. Susie Huang
More articles in Games from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().