The Prediction of Infectious Diseases: A Bibliometric Analysis
Wenting Yang,
Jiantong Zhang and
Ruolin Ma
Additional contact information
Wenting Yang: School of Economics and Management, Tongji University, Shanghai 200092, China
Jiantong Zhang: School of Economics and Management, Tongji University, Shanghai 200092, China
Ruolin Ma: Eli Broad College of Business, Michigan State University, Michigan, MI 48824, USA
IJERPH, 2020, vol. 17, issue 17, 1-19
Abstract:
Objective: The outbreak of infectious diseases has a negative influence on public health and the economy. The prediction of infectious diseases can effectively control large-scale outbreaks and reduce transmission of epidemics in rapid response to serious public health events. Therefore, experts and scholars are increasingly concerned with the prediction of infectious diseases. However, a knowledge mapping analysis of literature regarding the prediction of infectious diseases using rigorous bibliometric tools, which are supposed to offer further knowledge structure and distribution, has been conducted infrequently. Therefore, we implement a bibliometric analysis about the prediction of infectious diseases to objectively analyze the current status and research hotspots, in order to provide a reference for related researchers. Methods: We viewed “infectious disease*” and “prediction” or “forecasting” as search theme in the core collection of Web of Science from inception to 1 May 2020. We used two effective bibliometric tools, i.e., CiteSpace (Drexel University, Philadelphia, PA, USA) and VOSviewer (Leiden University, Leiden, The Netherlands) to objectively analyze the data of the prediction of infectious disease domain based on related publications, which can be downloaded from the core collection of Web of Science. Then, the leading publications of the prediction of infectious diseases were identified to detect the historical progress based on collaboration analysis, co-citation analysis, and co-occurrence analysis. Results: 1880 documents that met the inclusion criteria were extracted from Web of Science in this study. The number of documents exhibited a growing trend, which can be expressed an increasing number of experts and scholars paying attention to the field year by year. These publications were published in 427 different journals with 11 different document types, and the most frequently studied types were articles 1618 (83%). In addition, as the most productive country, the United States has provided a lot of scientific research achievements in the field of infectious diseases. Conclusion: Our study provides a systematic and objective view of the field, which can be useful for readers to evaluate the characteristics of publications involving the prediction of infectious diseases and for policymakers to take timely scientific responses.
Keywords: infectious diseases; prediction; bibliometric analysis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/17/6218/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/17/6218/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:17:p:6218-:d:404793
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().