EconPapers    
Economics at your fingertips  
 

Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov

Claus Zippel and Sabine Bohnet-Joschko
Additional contact information
Claus Zippel: Chair of Management and Innovation in Health Care, Faculty of Management, Economics and Society, Witten/Herdecke University, 58448 Witten, Germany
Sabine Bohnet-Joschko: Chair of Management and Innovation in Health Care, Faculty of Management, Economics and Society, Witten/Herdecke University, 58448 Witten, Germany

IJERPH, 2021, vol. 18, issue 10, 1-14

Abstract: Although advances in machine-learning healthcare applications promise great potential for innovative medical care, few data are available on the translational status of these new technologies. We aimed to provide a comprehensive characterization of the development and status quo of clinical studies in the field of machine learning. For this purpose, we performed a registry-based analysis of machine-learning-related studies that were published and first available in the ClinicalTrials.gov database until 2020, using the database’s study classification. In total, n = 358 eligible studies could be included in the analysis. Of these, 82% were initiated by academic institutions/university (hospitals) and 18% by industry sponsors. A total of 96% were national and 4% international. About half of the studies (47%) had at least one recruiting location in a country in North America, followed by Europe (37%) and Asia (15%). Most of the studies reported were initiated in the medical field of imaging (12%), followed by cardiology, psychiatry, anesthesia/intensive care medicine (all 11%) and neurology (10%). Although the majority of the clinical studies were still initiated in an academic research context, the first industry-financed projects on machine-learning-based algorithms are becoming visible. The number of clinical studies with machine-learning-related applications and the variety of medical challenges addressed serve to indicate their increasing importance in future clinical care. Finally, they also set a time frame for the adjustment of medical device-related regulation and governance.

Keywords: machine learning; digital health; registry analysis; ClinicalTrials.gov; device regulation (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/10/5072/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/10/5072/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:10:p:5072-:d:552243

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5072-:d:552243