EconPapers    
Economics at your fingertips  
 

Renewable Butanol Production via Catalytic Routes

Heeyoung Choi, Jeehoon Han and Jechan Lee
Additional contact information
Heeyoung Choi: Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea
Jeehoon Han: School of Semiconductor and Chemical Engineering & School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
Jechan Lee: Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea

IJERPH, 2021, vol. 18, issue 22, 1-14

Abstract: Fluctuating crude oil price and global environmental problems such as global warming and climate change lead to growing demand for the production of renewable chemicals as petrochemical substitutes. Butanol is a nonpolar alcohol that is used in a large variety of consumer products and as an important industrial intermediate. Thus, the production of butanol from renewable resources (e.g., biomass and organic waste) has gained a great deal of attention from researchers. Although typical renewable butanol is produced via a fermentative route (i.e., acetone-butanol-ethanol (ABE) fermentation of biomass-derived sugars), the fermentative butanol production has disadvantages such as a low yield of butanol and the formation of byproducts, such as acetone and ethanol. To avoid the drawbacks, the production of renewable butanol via non-fermentative catalytic routes has been recently proposed. This review is aimed at providing an overview on three different emerging and promising catalytic routes from biomass/organic waste-derived chemicals to butanol. The first route involves the conversion of ethanol into butanol over metal and oxide catalysts. Volatile fatty acid can be a raw chemical for the production of butanol using porous materials and metal catalysts. In addition, biomass-derived syngas can be transformed to butanol on non-noble metal catalysts promoted by alkali metals. The prospect of catalytic renewable butanol production is also discussed.

Keywords: biomass; butanol; catalysis; organic waste; renewable chemical; sustainable chemistry (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/22/11749/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/22/11749/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:22:p:11749-:d:675224

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:22:p:11749-:d:675224