Renewable Butanol Production via Catalytic Routes
Heeyoung Choi,
Jeehoon Han and
Jechan Lee
Additional contact information
Heeyoung Choi: Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea
Jeehoon Han: School of Semiconductor and Chemical Engineering & School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
Jechan Lee: Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea
IJERPH, 2021, vol. 18, issue 22, 1-14
Abstract:
Fluctuating crude oil price and global environmental problems such as global warming and climate change lead to growing demand for the production of renewable chemicals as petrochemical substitutes. Butanol is a nonpolar alcohol that is used in a large variety of consumer products and as an important industrial intermediate. Thus, the production of butanol from renewable resources (e.g., biomass and organic waste) has gained a great deal of attention from researchers. Although typical renewable butanol is produced via a fermentative route (i.e., acetone-butanol-ethanol (ABE) fermentation of biomass-derived sugars), the fermentative butanol production has disadvantages such as a low yield of butanol and the formation of byproducts, such as acetone and ethanol. To avoid the drawbacks, the production of renewable butanol via non-fermentative catalytic routes has been recently proposed. This review is aimed at providing an overview on three different emerging and promising catalytic routes from biomass/organic waste-derived chemicals to butanol. The first route involves the conversion of ethanol into butanol over metal and oxide catalysts. Volatile fatty acid can be a raw chemical for the production of butanol using porous materials and metal catalysts. In addition, biomass-derived syngas can be transformed to butanol on non-noble metal catalysts promoted by alkali metals. The prospect of catalytic renewable butanol production is also discussed.
Keywords: biomass; butanol; catalysis; organic waste; renewable chemical; sustainable chemistry (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/22/11749/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/22/11749/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:22:p:11749-:d:675224
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().