Invulnerability of the Urban Agglomeration Integrated Passenger Transport Network under Emergency Events
Peng Wu,
Yunfei Li and
Chengbing Li ()
Additional contact information
Peng Wu: School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Yunfei Li: School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Chengbing Li: Transportation Institute, Inner Mongolia University, Hohhot 010021, China
IJERPH, 2022, vol. 20, issue 1, 1-16
Abstract:
Urgent natural environmental events, such as floods, power failures, and epidemics, result in disruptions to the traffic system and heavy disturbances in public requirements. In order to strengthen the ability of the transport network to handle urgent natural environmental issues, this paper simulates the disruption situation of traffic stations in the urban agglomeration by attacking nodes, and evaluates the ability of the transport network to resist disruptions (i.e., invulnerability). Firstly, the model of the urban agglomeration integrated passenger transport network is established based on complex network theory. The highway network, railway network, and coupling network are combined into a multi-layer network space structure, and the edge weight is calibrated by travel time and cost. Secondly, the invulnerability simulation process including multiple attack modes under random and deliberate attack strategies is sorted out. By improving the traditional network efficiency indicator, the network impedance efficiency indicator is proposed to measure network performance, and the network relative impedance efficiency indicator is used to evaluate network invulnerability and identify key nodes. Finally, Chengdu–Chongqing urban agglomeration is taken as a case study. The results show that the network does not collapse quickly and it shows certain invulnerability and robustness under continuous random attacks. Network performance and invulnerability are not necessarily positively correlated. The failure of individual nodes that are small in scale but act as transit hubs may significantly degrade the network performance. The identified key nodes have significance for guiding the construction, maintenance, and optimization of the urban agglomeration passenger transport network, which is conducive to promoting public safety.
Keywords: public safety; integrated transportation; complex network theory; passenger transport network; emergency; invulnerability; resilience; urban agglomeration (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/1/450/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/1/450/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2022:i:1:p:450-:d:1016848
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().