EconPapers    
Economics at your fingertips  
 

Cryptocurrencies Intraday High-Frequency Volatility Spillover Effects Using Univariate and Multivariate GARCH Models

Apostolos Ampountolas
Additional contact information
Apostolos Ampountolas: School of Hospitality Administration, Boston University, Boston, MA 02215, USA

IJFS, 2022, vol. 10, issue 3, 1-22

Abstract: Over the past years, cryptocurrencies have drawn substantial attention from the media while attracting many investors. Since then, cryptocurrency prices have experienced high fluctuations. In this paper, we forecast the high-frequency 1 min volatility of four widely traded cryptocurrencies, i.e., Bitcoin, Ethereum, Litecoin, and Ripple, by modeling volatility to select the best model. We propose various generalized autoregressive conditional heteroscedasticity (GARCH) family models, including an sGARCH(1,1), GJR-GARCH(1,1), TGARCH(1,1), EGARCH(1,1), which we compare to a multivariate DCC-GARCH(1,1) model to forecast the intraday price volatility. We evaluate the results under the MSE and MAE loss functions. Statistical analyses demonstrate that the univariate GJR-GARCH model (1,1) shows a superior predictive accuracy at all horizons, followed closely by the TGARCH(1,1), which are the best models for modeling the volatility process on out-of-sample data and have more accurately indicated the asymmetric incidence of shocks in the cryptocurrency market. The study determines evidence of bidirectional shock transmission effects between the cryptocurrency pairs. Hence, the multivariate DCC-GARCH model can identify the cryptocurrency market’s cross-market volatility shocks and volatility transmissions. In addition, we introduce a comparison of the models using the improvement rate (IR) metric for comparing models. As a result, we compare the different forecasting models to the chosen benchmarking model to confirm the improvement trends for the model’s predictions.

Keywords: intraday volatility; bitcoin price forecasting; cryptocurrency; GARCH models; GJR-GARCH model; volatility forecasting; EGARCH model; TGARCH model; DCC-GARCH model; Ethereum; Litecoin; Ripple (search for similar items in EconPapers)
JEL-codes: F2 F3 F41 F42 G1 G2 G3 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.mdpi.com/2227-7072/10/3/51/pdf (application/pdf)
https://www.mdpi.com/2227-7072/10/3/51/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijfss:v:10:y:2022:i:3:p:51-:d:858574

Access Statistics for this article

IJFS is currently edited by Ms. Hannah Lu

More articles in IJFS from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijfss:v:10:y:2022:i:3:p:51-:d:858574