EconPapers    
Economics at your fingertips  
 

Dynamic Bankruptcy Prediction Models for European Enterprises

Tomasz Korol
Additional contact information
Tomasz Korol: Faculty of Management and Economics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

JRFM, 2019, vol. 12, issue 4, 1-15

Abstract: This manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and multilayer artificial neural network, and decision trees. Such a research approach will answer the question of whether changes in indicators are relevant predictors of a company’s coming financial crisis because declines or increases in values do not immediately indicate that the company’s economic situation is deteriorating. The research relies on two samples of firms—the learning sample of 50 bankrupt and 50 non-bankrupt enterprises and the testing sample of 250 bankrupt and 250 non-bankrupt firms.

Keywords: corporate bankruptcy; forecasting; fuzzy sets; artificial neural networks; decision trees (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.mdpi.com/1911-8074/12/4/185/pdf (application/pdf)
https://www.mdpi.com/1911-8074/12/4/185/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:185-:d:295688

Access Statistics for this article

JRFM is currently edited by Ms. Chelthy Cheng

More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:185-:d:295688