Practical Improvements to Mean-Variance Optimization for Multi-Asset Class Portfolios
Marin Lolic ()
Additional contact information
Marin Lolic: Independent Researcher, Baltimore, MD 21210, USA
JRFM, 2024, vol. 17, issue 5, 1-11
Abstract:
In the more than 70 years since Markowitz introduced mean-variance optimization for portfolio construction, academics and practitioners have documented numerous weaknesses in the approach. In this paper, we propose two easily understandable improvements to mean-variance optimization in the context of multi-asset class portfolios, each of which provides less extreme and more stable portfolio weights. The first method sacrifices a small amount of expected optimality for reduced weight concentration, while the second method randomly resamples the available assets. Additionally, we develop a process for testing the performance of portfolio construction approaches on simulated data assuming variable degrees of forecasting skill. Finally, we show that the improved methods achieve better out-of-sample risk-adjusted returns than standard mean-variance optimization for realistic investor skill levels.
Keywords: portfolio optimization; mean-variance optimization; portfolio theory; asset allocation (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/17/5/183/pdf (application/pdf)
https://www.mdpi.com/1911-8074/17/5/183/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:17:y:2024:i:5:p:183-:d:1385628
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().