EconPapers    
Economics at your fingertips  
 

Exploring the Regional Dynamics of U.S. Irrigated Agriculture from 2002 to 2017

Dinesh Shrestha, Jesslyn F. Brown, Trenton D. Benedict and Daniel M. Howard
Additional contact information
Dinesh Shrestha: KBR, Inc. Contractor to the U.S. Geological Survey Earth Resources Observation & Science (EROS) Center, Work Performed under Contract No: 140G0121D0001, Sioux Falls, SD 57198, USA
Jesslyn F. Brown: U.S. Geological Survey (USGS) Earth Resources Observation & Science (EROS) Center, Sioux Falls, SD 57198, USA
Trenton D. Benedict: KBR, Inc. Contractor to the U.S. Geological Survey Earth Resources Observation & Science (EROS) Center, Work Performed under Contract No: 140G0121D0001, Sioux Falls, SD 57198, USA
Daniel M. Howard: KBR, Inc. Contractor to the U.S. Geological Survey Earth Resources Observation & Science (EROS) Center, Work Performed under Contract No: 140G0121D0001, Sioux Falls, SD 57198, USA

Land, 2021, vol. 10, issue 4, 1-16

Abstract: The United States has a geographically mature and stable land use and land cover system including land used as irrigated cropland; however, changes in irrigation land use frequently occur related to various drivers. We applied a consistent methodology at a 250 m spatial resolution across the lower 48 states to map and estimate irrigation dynamics for four map eras (2002, 2007, 2012, and 2017) and over four 5-year mapping intervals. The resulting geospatial maps (called the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset or MIrAD-US) involved inputs from county-level irrigated statistics from the U.S. Department of Agriculture, National Agricultural Statistics Service, agricultural land cover from the U.S. Geological Survey National Land Cover Database, and an annual peak vegetation index derived from expedited MODIS satellite imagery. This study investigated regional and periodic patterns in the amount of change in irrigated agriculture and linked gains and losses to proximal causes and consequences. While there was a 7% overall increase in irrigated area from 2002 to 2017, we found surprising variability by region and by 5-year map interval. Irrigation land use dynamics affect the environment, water use, and crop yields. Regionally, we found that the watersheds with the largest irrigation gains (based on percent of area) included the Missouri, Upper Mississippi, and Lower Mississippi watersheds. Conversely, the California and the Texas–Gulf watersheds experienced fairly consistent irrigation losses during these mapping intervals. Various drivers for irrigation dynamics included regional climate fluctuations and drought events, demand for certain crops, government land or water policies, and economic incentives like crop pricing and land values. The MIrAD-US (Version 4) was assessed for accuracy using a variety of existing regionally based reference data. Accuracy ranged between 70% and 95%, depending on the region.

Keywords: irrigated agriculture; watershed boundaries; geospatial model; land use; accuracy (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2073-445X/10/4/394/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/4/394/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:4:p:394-:d:533223

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:10:y:2021:i:4:p:394-:d:533223