The Effects of Land Use on Concentrations of Nutrients and Selected Metals in Bottom Sediments and the Risk Assessment for Rivers of the Warta River Catchment, Poland
Michał Fiedler
Additional contact information
Michał Fiedler: Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, 60-628 Poznań, Poland
Land, 2021, vol. 10, issue 6, 1-20
Abstract:
Changes in the environment, aiming at agricultural intensification, progressive urbanisation and other forms of anthropopression, may cause an increase in soil erosion and a resulting increase in the pollution inflow to surface water. At the same time, this results in increased nutrient pollution of bottom sediments. In this study, the concentrations of total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), calcium (Ca), iron (Fe) and potassium (K) were analysed using bottom sediment samples collected at 39 sites located along the entire length of the Warta River and its tributaries. Agricultural use of land adjacent to rivers was found to significantly degrade sediment quality, while anthropogenic land use (as defined by Corine Land Cover classification—CLC), unlike previous studies, reduces the pollution loads in the bottom sediments. Forest use also contributes to the reduction of the pollution load in sediments. It was found that the significance of the relationship between pollutant concentrations and land use depends on the length of the river–land interface. According to the analyses, the level of correlation between the analysed constituents depends on the use of land adjacent to rivers. The impact of agricultural land use has the strongest effect in the 1 km zone and 5 km in the case of anthropogenic land use. The results showed that the variability of total phosphorus TP concentrations is strongly correlated with the variability of iron concentrations. SPI values indicate that the risk to sediment quality is low due to TOC and Fe concentrations. In contrast, the risk of sediment pollution by TN and TP shows greater differentiation. Although the risk is negligible for 40% of the samples, at the same time, for 33% of the samples, a very high risk of pollution with both TN and TP was found.
Keywords: sediment; nutrient element; risk; land cover; Warta River (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2073-445X/10/6/589/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/6/589/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:6:p:589-:d:567843
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().