Disaggregation of the Copernicus Land Use/Land Cover (LULC) and Population Density Data to Fit Mesoscale Flood Risk Assessment Requirements in Partially Urbanized Catchments in Croatia
Bojana Horvat () and
Nino Krvavica
Additional contact information
Bojana Horvat: Faculty of Civil Engineering, University of Rijeka, Radmile Matejčić 3, 51000 Rijeka, Croatia
Nino Krvavica: Faculty of Civil Engineering, University of Rijeka, Radmile Matejčić 3, 51000 Rijeka, Croatia
Land, 2023, vol. 12, issue 11, 1-22
Abstract:
Flood risk assessment at the mesoscale requires data that are spatially and thematically detailed enough to provide reliable estimates at the catchment level. However, data availability and suitability are often contradictory: available data are rarely suitable at the required level of detail. To overcome this problem, numerous disaggregation methods have been proposed in recent decades, often based on somewhat generalised imperviousness characteristics derived from the available urban land use/land cover (LULC) nomenclature. To reduce generalisation, we propose a new disaggregation approach using a spatially distributed imperviousness density (IMD) layer at a very detailed spatial resolution of 10 m as ancillary data to improve the thematic detail of the urban classes of the available LULC datasets (Coastal Zones, Natura 2000) and the dasymetric mapping of the census data. The nomenclature of the urban classes and the impervious density thresholds were taken from the detailed Urban Atlas dataset. The disaggregation of the census data is then built on the resulting geometry of thematically improved residential classes. Assuming that IMD values indicate a built-up density, the proposed weighting scheme is IMD-dependent: it accounts for variability in the built-up density and, hence, variability in population. The approach was tested in three catchments in Croatia, each with a different degree of urbanisation. The resulting statistics (mean square error and percentage error) indicate that residential areas and population density depend on IMD. Using IMD as additional data therefore greatly improves the assessment of elements that are exposed to flooding and, consequently, the damage and flood risk assessment.
Keywords: flood risk; mesoscale; land use/land cover; census; flood exposure; disaggregation; imperviousness density; dasymetric mapping (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/12/11/2014/pdf (application/pdf)
https://www.mdpi.com/2073-445X/12/11/2014/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:12:y:2023:i:11:p:2014-:d:1273492
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().