EconPapers    
Economics at your fingertips  
 

Sustainability Consequences of Making Land Change Decisions Based on Current Climatology in the Brazilian Cerrados

Daniel S. Silva () and Eugenio Y. Arima
Additional contact information
Daniel S. Silva: Department of Geography and the Environment, University of Texas at Austin, 305 E. 23rd St., A3100, Austin, TX 78712, USA
Eugenio Y. Arima: Department of Geography and the Environment, University of Texas at Austin, 305 E. 23rd St., A3100, Austin, TX 78712, USA

Land, 2023, vol. 12, issue 4, 1-18

Abstract: Brazil is one of the largest suppliers of commodities in the world, partly due to the agricultural expansion in the Brazilian savannas (also known as Cerrado) that began in the 1970s. However, as areas with better soil and climate for agriculture become scarce, farmers have been advancing to the ecotone between the savanna and xeric shrubland, where precipitation is less reliable for rainfed agriculture. The expected increase in temperature will lead to extended drought periods, with negative consequences for surface and groundwater resources. This study explores the hazards associated with making land-use decisions based on current climatology in regions where projected increases in temperature and reductions in water availability are anticipated to pose significant challenges to rainfed agriculture in the Brazilian Cerrado biome. We modeled future farmland expansion and how that matches with future climate change predictions (2016–2046). According to our estimates, at least 129 thousand km 2 of cropland and 418 thousand km 2 of pastures will be added in places with projected higher annual temperatures ranging from 26–30 °C. This is equivalent to ~60% of the current agricultural areas, and a novel agro-climatology will emerge for the Cerrado biome. Therefore, we discuss the agro-environmental policies that are pushing and pulling farmland expansion in the Cerrado. For instance, payments for environmental services could support the conservation of native vegetation on private land in regions with the highest temperature increases and deforestation risks. Moreover, in areas with expected reduced water yields, such as in the western Cerrado, the protection of riparian vegetation and strict regulation of water use could mitigate future risks to agriculture.

Keywords: cerrado; land cover modeling; water management; temperature (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/12/4/914/pdf (application/pdf)
https://www.mdpi.com/2073-445X/12/4/914/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:12:y:2023:i:4:p:914-:d:1127274

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:914-:d:1127274