EconPapers    
Economics at your fingertips  
 

Research on the Period-Doubling Bifurcation of Fractional-Order DCM Buck–Boost Converter Based on Predictor-Corrector Algorithm

Lingling Xie, Jiahao Shi, Junyi Yao and Di Wan
Additional contact information
Lingling Xie: School of Electrical Engineering, Guangxi University, Nanning 530004, China
Jiahao Shi: School of Electrical Engineering, Guangxi University, Nanning 530004, China
Junyi Yao: School of Electrical Engineering, Guangxi University, Nanning 530004, China
Di Wan: School of Electrical Engineering, Guangxi University, Nanning 530004, China

Mathematics, 2022, vol. 10, issue 12, 1-13

Abstract: DC–DC converters are widely used. They are a typical class of strongly nonlinear time-varying systems that show rich nonlinear phenomena under certain working conditions. Therefore, an in-depth study of their nonlinear phenomena, characteristics, and generation mechanism is of great practical significance for gaining a deep understanding of this kind of switching converter, revealing the essence of these nonlinear phenomena and then optimizing the design of this kind of converter. Based on the fact that most of the inductance and capacitance are fractional-order, the nonlinear dynamic characteristics of the fractional-order (FO) DCM buck–boost converter are researched in this paper. The main research work and achievements of this paper include: (1) using the predictor–corrector method of fractional calculus, which is not limited by fractional order and can directly calculate the accurate values of the inductance current and capacitor voltage of the fractional converter; the predictor–corrector model of the FO converter is established. (2) The bifurcation diagrams are obtained based on this model, and the period-doubling bifurcation and chaotic behavior of the FO buck–boost converter are analyzed. (3) The phase diagrams are obtained and verified to the point that period-doubling bifurcation occurs; then, some conclusions are drawn. The results show that under certain operating and parameters conditions, the FO buck–boost converter will appear as a bifurcation and chaotic nonlinear phenomenon. Under the condition of the same circuit parameters, the stability parameter domains of the integer-order buck–boost converter and the FO buck–boost converter are different. Compared with the integer-order converter, the parameter stability region of the FO buck–boost converter is bigger. The FO buck–boost converter is more accurate at describing the nonlinear dynamic characteristics. Furthermore, the predictor–corrector method can also be applied to other FO power converters and provides theoretical guidance for converter parameter optimization and controller design.

Keywords: fractional-order; buck–boost converter; predictor–corrector algorithm; period-doubling bifurcation; chaos (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/12/1993/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/12/1993/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:12:p:1993-:d:834819

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:1993-:d:834819