Reduced Calibration Strategy Using a Basketball for RGB-D Cameras
Luis-Rogelio Roman-Rivera,
Israel Sotelo-Rodríguez,
Jesus Carlos Pedraza-Ortega,
Marco Antonio Aceves-Fernandez,
Juan Manuel Ramos-Arreguín and
Efrén Gorrostieta-Hurtado
Additional contact information
Luis-Rogelio Roman-Rivera: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico
Israel Sotelo-Rodríguez: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico
Jesus Carlos Pedraza-Ortega: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico
Marco Antonio Aceves-Fernandez: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico
Juan Manuel Ramos-Arreguín: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico
Efrén Gorrostieta-Hurtado: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico
Mathematics, 2022, vol. 10, issue 12, 1-15
Abstract:
RGB-D cameras produce depth and color information commonly used in the 3D reconstruction and vision computer areas. Different cameras with the same model usually produce images with different calibration errors. The color and depth layer usually requires calibration to minimize alignment errors, adjust precision, and improve data quality in general. Standard calibration protocols for RGB-D cameras require a controlled environment to allow operators to take many RGB and depth pair images as an input for calibration frameworks making the calibration protocol challenging to implement without ideal conditions and the operator experience. In this work, we proposed a novel strategy that simplifies the calibration protocol by requiring fewer images than other methods. Our strategy uses an ordinary object, a know-size basketball, as a ground truth sphere geometry during the calibration. Our experiments show comparable results requiring fewer images and non-ideal scene conditions than a reference method to align color and depth image layers.
Keywords: RGB-D camera; RGB-D camera calibration; spherical object; 3D reconstruction; sphere detection (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/12/2085/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/12/2085/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:12:p:2085-:d:840189
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().