Active Disturbance Rejection Strategy for Distance and Formation Angle Decentralized Control in Differential-Drive Mobile Robots
Mario Ramírez-Neria,
Jaime González-Sierra,
Alberto Luviano-Juárez,
Norma Lozada-Castillo and
Rafal Madonski ()
Additional contact information
Mario Ramírez-Neria: InIAT Institute of Applied Research and Technology, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Ciudad de México 01219, Mexico
Jaime González-Sierra: Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, Carretera Pachuca-Actopan Kilómetro 1+500 Ciudad del Conocimiento y la Cultura Educación, San Agustín Tlaxiaca 42162, Mexico
Alberto Luviano-Juárez: Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. Barrio La Laguna Ticomán, Ciudad de México 07340, Mexico
Norma Lozada-Castillo: Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. Barrio La Laguna Ticomán, Ciudad de México 07340, Mexico
Rafal Madonski: Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China
Mathematics, 2022, vol. 10, issue 20, 1-19
Abstract:
The important practical problem of robust synchronization in distance and orientation for a class of differential-drive mobile robots is tackled in this work as an active disturbance rejection control (ADRC) problem. To solve it, a kinematic model of the governed system is first developed based on the distance and formation angle between the agents. Then, a special high-order extended state observer is designed to collectively estimate the perturbations (formed by longitudinal and lateral slipping parameters) that affect the kinematic model. Finally, a custom error-based ADRC approach is designed and applied assuming that the distance and orientation between the agents are the only available measurements. The proposed control strategy does not need time-derivatives of the reference trajectory, which increases the practical appeal of the proposed solution. The experimental results, obtained in laboratory conditions with a set of differential-drive mobile robots operating in a leader–follower configuration, show the effectiveness of the proposed governing scheme in terms of trajectory tracking and disturbance rejection.
Keywords: active disturbance rejection control (ADRC); differential-drive mobile robots; multi-robot control; formation control; extended state observer (ESO); robust control (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/20/3865/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/20/3865/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:20:p:3865-:d:946189
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().