EconPapers    
Economics at your fingertips  
 

Active Disturbance Rejection Strategy for Distance and Formation Angle Decentralized Control in Differential-Drive Mobile Robots

Mario Ramírez-Neria, Jaime González-Sierra, Alberto Luviano-Juárez, Norma Lozada-Castillo and Rafal Madonski ()
Additional contact information
Mario Ramírez-Neria: InIAT Institute of Applied Research and Technology, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Ciudad de México 01219, Mexico
Jaime González-Sierra: Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, Carretera Pachuca-Actopan Kilómetro 1+500 Ciudad del Conocimiento y la Cultura Educación, San Agustín Tlaxiaca 42162, Mexico
Alberto Luviano-Juárez: Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. Barrio La Laguna Ticomán, Ciudad de México 07340, Mexico
Norma Lozada-Castillo: Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. Barrio La Laguna Ticomán, Ciudad de México 07340, Mexico
Rafal Madonski: Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China

Mathematics, 2022, vol. 10, issue 20, 1-19

Abstract: The important practical problem of robust synchronization in distance and orientation for a class of differential-drive mobile robots is tackled in this work as an active disturbance rejection control (ADRC) problem. To solve it, a kinematic model of the governed system is first developed based on the distance and formation angle between the agents. Then, a special high-order extended state observer is designed to collectively estimate the perturbations (formed by longitudinal and lateral slipping parameters) that affect the kinematic model. Finally, a custom error-based ADRC approach is designed and applied assuming that the distance and orientation between the agents are the only available measurements. The proposed control strategy does not need time-derivatives of the reference trajectory, which increases the practical appeal of the proposed solution. The experimental results, obtained in laboratory conditions with a set of differential-drive mobile robots operating in a leader–follower configuration, show the effectiveness of the proposed governing scheme in terms of trajectory tracking and disturbance rejection.

Keywords: active disturbance rejection control (ADRC); differential-drive mobile robots; multi-robot control; formation control; extended state observer (ESO); robust control (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/20/3865/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/20/3865/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:20:p:3865-:d:946189

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3865-:d:946189