EconPapers    
Economics at your fingertips  
 

Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems

Marcelo Becerra-Rozas (), Felipe Cisternas-Caneo, Broderick Crawford (), Ricardo Soto, José García, Gino Astorga and Wenceslao Palma
Additional contact information
Marcelo Becerra-Rozas: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
Felipe Cisternas-Caneo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
Broderick Crawford: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
Ricardo Soto: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
José García: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362807, Chile
Gino Astorga: Escuela de Negocios Internacionales, Universidad de Valparaíso, Viña del Mar 2572048, Chile
Wenceslao Palma: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

Mathematics, 2022, vol. 10, issue 23, 1-18

Abstract: When we face real problems using computational resources, we understand that it is common to find combinatorial problems in binary domains. Moreover, we have to take into account a large number of possible candidate solutions, since these can be numerous and make it complicated for classical algorithmic techniques to address them. When this happens, in most cases, it becomes a problem due to the high resource cost they generate, so it is of utmost importance to solve these problems efficiently. To cope with this problem, we can apply other methods, such as metaheuristics. There are some metaheuristics that allow operation in discrete search spaces; however, in the case of continuous swarm intelligence metaheuristics, it is necessary to adapt them to operate in discrete domains. To perform this adaptation, it is necessary to use a binary scheme to take advantage of the original moves of the metaheuristics designed for continuous problems. In this work, we propose to hybridize the whale optimization algorithm metaheuristic with the Q-learning reinforcement learning technique, which we call (the QBWOA). By using this technique, we are able to realize an smart and fully online binarization scheme selector, the results have been statistically promising thanks to the respective tables and graphs.

Keywords: binarization; metaheuristic; binary; whale optimization algorithm; combinatorial problem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/23/4529/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/23/4529/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:23:p:4529-:d:989237

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4529-:d:989237