EconPapers    
Economics at your fingertips  
 

A Robust Sphere Detection in a Realsense Point Cloud by USING Z-Score and RANSAC

Luis-Rogelio Roman-Rivera (), Jesus Carlos Pedraza-Ortega, Marco Antonio Aceves-Fernandez, Juan Manuel Ramos-Arreguín, Efrén Gorrostieta-Hurtado and Saúl Tovar-Arriaga
Additional contact information
Luis-Rogelio Roman-Rivera: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
Jesus Carlos Pedraza-Ortega: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
Marco Antonio Aceves-Fernandez: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
Juan Manuel Ramos-Arreguín: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
Efrén Gorrostieta-Hurtado: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
Saúl Tovar-Arriaga: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico

Mathematics, 2023, vol. 11, issue 4, 1-16

Abstract: Three-dimensional vision cameras, such as RGB-D, use 3D point cloud to represent scenes. File formats as XYZ and PLY are commonly used to store 3D point information as raw data, this information does not contain further details, such as metadata or segmentation, for the different objects in the scene. Moreover, objects in the scene can be recognized in a posterior process and can be used for other purposes, such as camera calibration or scene segmentation. We are proposing a method to recognize a basketball in the scene using its known dimensions to fit a sphere formula. In the proposed cost function we search for three different points in the scene using RANSAC (Random Sample Consensus). Furthermore, taking into account the fixed basketball size, our method differentiates the sphere geometry from other objects in the scene, making our method robust in complex scenes. In a posterior step, the sphere center is fitted using z-score values eliminating outliers from the sphere. Results show our methodology converges in finding the basketball in the scene and the center precision improves using z-score, the proposed method obtains a significant improvement by reducing outliers in scenes with noise from 1.75 to 8.3 times when using RANSAC alone. Experiments show our method has advantages when comparing with novel deep learning method.

Keywords: 3D point cloud; RANSAC; sphere detection; RGB-D cameras; z-score (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/4/1023/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/4/1023/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:4:p:1023-:d:1071856

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:1023-:d:1071856