EconPapers    
Economics at your fingertips  
 

Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO 2 Emissions

Luis Fernando Grisales-Noreña (), Oscar Danilo Montoya and Alberto-Jesus Perea-Moreno ()
Additional contact information
Luis Fernando Grisales-Noreña: Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile
Oscar Danilo Montoya: Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
Alberto-Jesus Perea-Moreno: Departamento de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain

Mathematics, 2023, vol. 11, issue 7, 1-23

Abstract: This work addressed the problem regarding the optimal integration of battery systems (BS) in grid-connected networks (GCNs) with the purpose of reducing energy losses and CO 2 emissions, for which it formulates a mathematical model that considers the constraints associated with the operation of GCNs in a distributed generation environment that includes BS and variable power generation related to photovoltaic (PV) distributed generation (DG) and demand. As solution strategies, three different master–slave methodologies are employed that are based on sequential programming methods, with the aim to avoid the implementation of commercial software. In the master stage, to solve the problem regarding the location and the type of batteries to be used, parallel-discrete versions of the Montecarlo method (PMC), a genetic algorithm (PDGA), and the search crow algorithm (PDSCA) are employed. In the slave stage, the particle swarm optimization algortihm (PSO) is employed to solve the problem pertaining to the operation of the batteries, using a matrix hourly power flow to assess the impact of each possible solution proposed by the master–slave methodologies on the objective functions and constraints. As a test scenario, a GCN based on the 33-bus test systems is used, which considers the generation, power demand, and CO 2 emissions behavior of the city of Medellín (Colombia). Each algorithm is executed 1000 times, with the aim to evaluate the effectiveness of each solution in terms of its quality, standard deviation, and processing times. The simulation results obtained in this work demostrate that PMC/PSO is the master–slave methodology with the best performance in terms of solution quality, repeatability, and processing time.

Keywords: grid connected network; optimization algorithm; master-slave strategy; parallel processing; photovoltaic generation; battery systems; energy loss; environmental emissions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/7/1604/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/7/1604/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:7:p:1604-:d:1107848

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1604-:d:1107848