EconPapers    
Economics at your fingertips  
 

Markov-Switching Stochastic Processes in an Active Trading Algorithm in the Main Latin-American Stock Markets

Oscar V. De la Torre-Torres, Evaristo Galeana-Figueroa and José Álvarez-García
Additional contact information
Oscar V. De la Torre-Torres: Faculty of Accounting and Management, Saint Nicholas and Hidalgo Michoacán State University (UMSNH), 58030 Morelia, Mexico
Evaristo Galeana-Figueroa: Faculty of Accounting and Management, Saint Nicholas and Hidalgo Michoacán State University (UMSNH), 58030 Morelia, Mexico
José Álvarez-García: Financial Economy and Accounting Department, Faculty of Business, Finance and Tourism, University of Extremadura, 10071 Cáceres, Spain

Mathematics, 2020, vol. 8, issue 6, 1-23

Abstract: In the present paper, we review the use of two-state, Generalized Auto Regressive Conditionally Heteroskedastic Markovian stochastic processes (MS-GARCH). These show the quantitative model of an active stock trading algorithm in the three main Latin-American stock markets (Brazil, Chile, and Mexico). By backtesting the performance of a U.S. dollar based investor, we found that the use of the Gaussian MS-GARCH leads, in the Brazilian market, to a better performance against a buy and hold strategy (BH). In addition, we found that the use of t-Student MS-ARCH models is preferable in the Chilean market. Lastly, in the Mexican case, we found that is better to use Gaussian time-fixed variance MS models. Their use leads to the best overall performance than the BH portfolio. Our results are of use for practitioners by the fact that MS-GARCH models could be part of quantitative and computer algorithms for active trading in these three stock markets.

Keywords: Markov-Switching; Markov-Switching GARCH; Markovian chain; algorithmic trading; active stock trading; active investment; Latin-American stock markets; computational finance (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/942/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/942/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:942-:d:368746

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:942-:d:368746