EconPapers    
Economics at your fingertips  
 

Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks

Sangho Lee and Youngdoo Son
Additional contact information
Sangho Lee: Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Korea
Youngdoo Son: Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Korea

Mathematics, 2021, vol. 9, issue 12, 1-21

Abstract: The use of machine learning algorithms to improve productivity and quality and to maximize efficiency in the steel industry has recently become a major trend. In this paper, we propose an algorithm that automates the setup in the cold-rolling process and maximizes productivity by predicting the roll forces and motor loads with multi-layer perceptron networks in addition to balancing the motor loads to increase production speed. The proposed method first constructs multilayer perceptron models with all available information from the components, the hot-rolling process, and the cold-rolling process. Then, the cold-rolling variables related to the normal part set-up are adjusted to balance the motor loads among the rolling stands. To validate the proposed method, we used a data set with 70,533 instances of 128 types of steels with 78 variables, extracted from the actual manufacturing process. The proposed method was found to be superior to the physical prediction model currently used for setups with regard to the prediction accuracy, motor load balancing, and production speed.

Keywords: neural networks; steel manufacturing; intelligent manufacturing systems; artificial intelligence; smart factory (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/12/1367/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/12/1367/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:12:p:1367-:d:574109

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1367-:d:574109