EconPapers    
Economics at your fingertips  
 

Sorting-Based Discrete Artificial Bee Colony Algorithm for Solving Fuzzy Hybrid Flow Shop Green Scheduling Problem

Mei Li, Gai-Ge Wang and Helong Yu
Additional contact information
Mei Li: Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
Gai-Ge Wang: Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
Helong Yu: College of Information Technology, Jilin Agricultural University, Changchun 130118, China

Mathematics, 2021, vol. 9, issue 18, 1-30

Abstract: In this era of unprecedented economic and social prosperity, problems such as energy shortages and environmental pollution are gradually coming to the fore, which seriously restrict economic and social development. In order to solve these problems, green shop scheduling, which is a key aspect of the manufacturing industry, has attracted the attention of researchers, and the widely used flow shop scheduling problem (HFSP) has become a hot topic of research. In this paper, we study the fuzzy hybrid green shop scheduling problem (FHFGSP) with fuzzy processing time, with the objective of minimizing makespan and total energy consumption. This is more in line with real-life situations. The non-linear integer programming model of FHFGSP is built by expressing job processing times as triangular fuzzy numbers (TFN) and considering the machine setup times when processing different jobs. To address the FHFGSP, a discrete artificial bee colony (DABC) algorithm based on similarity and non-dominated solution ordering is proposed, which allows individuals to explore their neighbors to different degrees in the employed bee phase according to a sequence of positions, increasing the diversity of the algorithm. During the onlooker bee phase, individuals at the front of the sequence have a higher chance of being tracked, increasing the convergence rate of the colony. In addition, a mutation strategy is proposed to prevent the population from falling into a local optimum. To verify the effectiveness of the algorithm, 400 test cases were generated, comparing the proposed strategy and the overall algorithm with each other and evaluating them using three different metrics. The experimental results show that the proposed algorithm outperforms other algorithms in terms of quantity, quality, convergence and diversity.

Keywords: green shop scheduling; fuzzy hybrid flow shop scheduling; discrete artificial bee colony algorithm; minimize makespan; minimize total energy consumption (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/18/2250/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/18/2250/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:18:p:2250-:d:634918

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2250-:d:634918