Machine Learning Applied to the Oxygen-18 Isotopic Composition, Salinity and Temperature/Potential Temperature in the Mediterranean Sea
Gonzalo Astray,
Benedicto Soto,
Enrique Barreiro,
Juan F. Gálvez and
Juan C. Mejuto
Additional contact information
Gonzalo Astray: Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, 32004 Ourense, España
Benedicto Soto: Universidade de Vigo, Departamento de Bioloxia Vexetal e Ciencias do Solo, 36310 Vigo, España
Enrique Barreiro: Universidade de Vigo, Departamento de Informática, Escola Superior Enxeñaría Informática, 32004 Ourense, España
Juan F. Gálvez: Universidade de Vigo, Departamento de Informática, Escola Superior Enxeñaría Informática, 32004 Ourense, España
Juan C. Mejuto: Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, 32004 Ourense, España
Mathematics, 2021, vol. 9, issue 19, 1-15
Abstract:
This study proposed different techniques to estimate the isotope composition (? 18 O), salinity and temperature/potential temperature in the Mediterranean Sea using five different variables: (i–ii) geographic coordinates (Longitude, Latitude), (iii) year, (iv) month and (v) depth. Three kinds of models based on artificial neural network (ANN), random forest (RF) and support vector machine (SVM) were developed. According to the results, the random forest models presents the best prediction accuracy for the querying phase and can be used to predict the isotope composition (mean absolute percentage error (MAPE) around 4.98%), salinity (MAPE below 0.20%) and temperature (MAPE around 2.44%). These models could be useful for research works that require the use of past data for these variables.
Keywords: machine learning; artificial neural network; random forest; support vector machine; oxygen isotopic composition; salinity; temperature; potential temperature; modelling (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/19/2523/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/19/2523/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:19:p:2523-:d:651480
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().