EconPapers    
Economics at your fingertips  
 

A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle

Nicu Bizon and Phatiphat Thounthong
Additional contact information
Nicu Bizon: Faculty of Electronics, Communication and Computers, University of Pitesti, 1 Targul din Vale, 110040 Pitesti, Romania
Phatiphat Thounthong: Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand

Mathematics, 2021, vol. 9, issue 6, 1-29

Abstract: A new real-time strategy is proposed in this article to optimize the hydrogen utilization of a fuel cell vehicle, by switching the control references of fueling regulators, based on load-following. The advantages of this strategy are discussed and compared, with advanced strategies that also use the aforementioned load-following mode regulator of fueling controllers, but in the entire loading range, respectively, with a benchmark strategy utilizing the static feed-forward control of fueling controllers. Additionally, the advantages of energy-storage function in a charge-sustained mode, such as a longer service life and reduced size due to the implementation of the proposed switching strategy, are presented for the dynamic profiles across the entire load range. The optimization function was designed to improve the fuel economy by adding to the total power of the fuel utilization efficiency (in a weighted way). The proposed optimization loop will seek the reference value to control the fueling regulator in real-time, which is not regulated by a load-following approach. The best switching threshold between the high and low loading scales were obtained using a sensitivity analysis carried out for both fixed and dynamic loads. The results obtained were promising—(1) the fuel economy was two-times higher than the advanced strategies mentioned above; and (2) the total fuel consumption was 13% lower than the static feed-forward strategy. This study opens new research directions for fuel cell vehicles, such as for obtaining the best fuel economy or estimating fuel consumption up to the first refueling station on the planned road.

Keywords: fuel economy; load-following; switching strategy; real-time optimization; fuel cell vehicle; fuel cell system (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/6/604/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/6/604/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:6:p:604-:d:515073

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:604-:d:515073