EconPapers    
Economics at your fingertips  
 

Comparing the Robustness of the Structural after Measurement (SAM) Approach to Structural Equation Modeling (SEM) against Local Model Misspecifications with Alternative Estimation Approaches

Alexander Robitzsch
Additional contact information
Alexander Robitzsch: IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany

Stats, 2022, vol. 5, issue 3, 1-42

Abstract: Structural equation models (SEM), or confirmatory factor analysis as a special case, contain model parameters at the measurement part and the structural part. In most social-science SEM applications, all parameters are simultaneously estimated in a one-step approach (e.g., with maximum likelihood estimation). In a recent article, Rosseel and Loh (2022, Psychol. Methods ) proposed a two-step structural after measurement (SAM) approach to SEM that estimates the parameters of the measurement model in the first step and the parameters of the structural model in the second step. Rosseel and Loh claimed that SAM is more robust to local model misspecifications (i.e., cross loadings and residual correlations) than one-step maximum likelihood estimation. In this article, it is demonstrated with analytical derivations and simulation studies that SAM is generally not more robust to misspecifications than one-step estimation approaches. Alternative estimation methods are proposed that provide more robustness to misspecifications. SAM suffers from finite-sample bias that depends on the size of factor reliability and factor correlations. A bootstrap-bias-corrected LSAM estimate provides less biased estimates in finite samples. Nevertheless, we argue in the discussion section that applied researchers should nevertheless adopt SAM because robustness to local misspecifications is an irrelevant property when applying SAM. Parameter estimates in a structural model are of interest because intentionally misspecified SEMs frequently offer clearly interpretable factors. In contrast, SEMs with some empirically driven model modifications will result in biased estimates of the structural parameters because the meaning of factors is unintentionally changed.

Keywords: structural equation modeling; model misspecification; structural after measurement approach; robust loss function (search for similar items in EconPapers)
JEL-codes: C1 C10 C11 C14 C15 C16 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2571-905X/5/3/39/pdf (application/pdf)
https://www.mdpi.com/2571-905X/5/3/39/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jstats:v:5:y:2022:i:3:p:39-672:d:869466

Access Statistics for this article

Stats is currently edited by Mrs. Minnie Li

More articles in Stats from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jstats:v:5:y:2022:i:3:p:39-672:d:869466