EconPapers    
Economics at your fingertips  
 

A Bi-Level Programming Model of Liquefied Petroleum Gas Transportation Operation for Urban Road Network by Period-Security

Xiaoyan Jia, Ruichun He, Chunmin Zhang and Huo Chai
Additional contact information
Xiaoyan Jia: School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
Ruichun He: School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
Chunmin Zhang: School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
Huo Chai: School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Sustainability, 2018, vol. 10, issue 12, 1-20

Abstract: As a clean energy, Liquefied Petroleum Gas (LPG) is consistent with the coordinated and sustainable development of both the economy and environment. However, LPG is a hazardous material (hazmat) and is thus always transported in cylinders by vehicles on urban road networks to meet varying demand. This transport can threaten the surrounding citizens, vehicles, and even the whole urban area. Hence, LPG transportation should be focused on maintaining its security while simultaneously minimizing shipping costs. When LPG is moved through an urban area, its threat level fluctuates with the network congestion level, which continually varies by different time periods. So, variation in the magnitude of the threat posed by LPG transportation causes additional changes in the safe-related cost as well as the shipping cost. This study aims to solve the problem of an LPG transportation operation on an urban road network according to congested periods; the solution is based on cutting its two types of cost. In general, we should choose an LPG transport period that results in a lower safety cost, however optimization of an LPG transportation operation must minimize both the safety cost and shipping cost. This paper presents the problem of LPG flow distribution and vehicle dispatch scheme by “period-security” to rationalize the LPG transport risk level. Firstly, the impedance function of LPG flow distribution was constructed with a focus on the safety cost in different periods. Meanwhile, a bi-level programming model was built, in which the upper mixed binary integer programming model aims to minimize the shipping cost and the lower model is a user-equilibrium model that is aimed at calculating the distribution of the LPG demands on the given lines and in feasible periods. Then, we designed a heuristic algorithm based on the Genetic Algorithm to solve the upper model and embedded the Frank-Wolfe Algorithm to get the optimal LPG flow distribution solution. Numerical examples are presented which validate that the LPG optimal operation can realize a minimal safety cost and the minimum shipping cost for three LPG demand values by considering the congestion situation.

Keywords: liquefied petroleum gas; safety cost; Bi-level programming model; user equilibrium; period-security (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/12/4714/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/12/4714/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:12:p:4714-:d:189583

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4714-:d:189583