EconPapers    
Economics at your fingertips  
 

One-Dimensional Analytical Modeling of Pressure- Retarded Osmosis in a Parallel Flow Configuration for the Desalination Industry in the State of Kuwait

Bader S. Al-Anzi and Ashly Thomas
Additional contact information
Bader S. Al-Anzi: Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
Ashly Thomas: Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Sustainability, 2018, vol. 10, issue 4, 1-14

Abstract: The present study deals with the application of one-dimensional (1D) analytical expressions for a parallel flow configuration in pressure-retarded osmosis (PRO) exchangers by using actual brine and feed salinity values from the Kuwait desalination industry. The 1D expressions are inspired by the effectiveness-number of transfer unit (ε-NTU) method used in heat exchanger analysis and has been developed to “size” an osmotically-driven membrane process (ODMP) mass exchanger given the operating conditions and desired performance. The driving potentials in these mass exchangers are the salinity differences between feed and draw solution. These 1D model equations are employed to determine mass transfer units (MTU) as a function of different dimensionless groups such as mass flowrate ratio (MR), recovery ratio (RR), concentration factors (CF) and effectiveness (ε). The introduction of new dimensionless groups such as the dilution rate ratio (DRR) and dilution rate (DR) would be used to relate the actual water permeation to the brine draw stream. The results show that a maximum power of 0.28 and 2.6 kJ can be produced by the PRO system using seawater or treated wastewater effluent (TWE) as the feed solution, respectively, which might be able to reduce the power consumption of the desalination industry in Kuwait.

Keywords: pressure-retarded osmosis; mass transfer units; maximum power; effectiveness; dilution rate ratio (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/4/1288/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/4/1288/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:4:p:1288-:d:142520

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1288-:d:142520