EconPapers    
Economics at your fingertips  
 

An Original Approach Combining CFD, Linearized Models, and Deformation of Trees for Urban Wind Power Assessment

Jan Konopka, António Lopes and Andreas Matzarakis
Additional contact information
Jan Konopka: Department of Climatology and Environmental Meteorology, Institute of Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany
António Lopes: Institute of Geography and Spatial Planning, Center of Geographical Studies (ZEPHYRUS/Climate Change and Environmental Systems Research Group), Universidade de Lisboa. Ed. IGOT, R. Branca Edmée Marques, 1600-276 Lisbon, Portugal
Andreas Matzarakis: Faculty of Environmental Sciences and Natural Resources, Albert-Ludwigs-University Freiburg, 79085 Freiburg, Germany

Sustainability, 2018, vol. 10, issue 6, 1-24

Abstract: Wind energy is relevant to self-sufficiency in urban areas, but the accuracy of wind assessment is a barrier to allowing wind energy development. The aim of this work is to test the performance of the Griggs-Putnam Index of Deformity of trees (G-PID) over urban areas as an alternative method for assessing wind conditions. G-PID has been widely used in open terrains, but this work is the first attempt to apply it in urban areas. The results were compared with CFD simulations (ENVI-met), and finally, with the linear model WAsP to inspect if deformed trees can offer acceptable wind power assessments. WAsP (meso-) and ENVI-met (micrometeorological model) showed similar results in a test area inside the University of Lisbon Campus. All trees showed a deformation with the wind direction (S and SE). The mean G-PID wind speed for all trees was 5.9 m/s. Comparing this to the ENVI-met simulations results (mean speed for all trees was 4.25 m/s) made it necessary to adapt the index to urban terrains by reducing each Index Deformation class by about ~2 m/s. Nevertheless, more investigation is needed, since this study is just a first approach to this integrated methodology. Also, tree species and characteristics were not taken into account. These questions should be addressed in future studies, because the deformation of trees depends also on the tree species and phytosanitary conditions.

Keywords: wind power potential; Griggs-Putnam index; tree deformation; modeling; ENVI-met; WAsP; energy efficiency; Lisbon (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/6/1915/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/6/1915/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:6:p:1915-:d:151269

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1915-:d:151269