Day-Ahead Scheduling Model of the Distributed Small Hydro-Wind-Energy Storage Power System Based on Two-Stage Stochastic Robust Optimization
Jun Dong,
Peiwen Yang and
Shilin Nie
Additional contact information
Jun Dong: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Peiwen Yang: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Shilin Nie: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Sustainability, 2019, vol. 11, issue 10, 1-27
Abstract:
With renewable energy sources (RESs) highly penetrating into the power system, new problems emerge for the independent system operator (ISO) to maintain and keep the power system safe and reliable in the day-ahead dispatching process under the fluctuation caused by renewable energy. In this paper, considering the small hydropower with no reservoir, different from the other hydro optimization research and wind power uncertain circumstances, a day-ahead scheduling model is proposed for a distributed power grid system which contains several distributed generators, such as small hydropower and wind power, and energy storage systems. To solve this model, a two-stage stochastic robust optimization approach is presented to smooth out hydro power and wind power output fluctuation with the aim of minimizing the total expected system operation cost under multiple cluster water inflow scenarios, and the worst case of wind power output uncertainty. More specifically, before dispatching and clearing, it is necessary to cluster the historical inflow scenarios of small hydropower into several typical scenarios via the Fuzzy C-means (FCM) clustering method, and then the clustering comprehensive quality (CCQ) method is also presented to evaluate whether these scenarios are representative, which has previously been ignored by cluster research. It can be found through numerical examples that FCM-CCQ can explain the classification more reasonably than the common clustering method. Then we optimize the two stage scheduling, which contain the pre-clearing stage and the rescheduling stage under each typical inflow scenario after clustering, and then calculate the final operating cost under the worst wind power output scenario. To conduct the proposed model, the day-ahead scheduling procedure on the Institute of Electrical and Electronics Engineers (IEEE) 30-bus test system is simulated with real hydropower and wind power data. Compared with traditional deterministic optimization, the results of two-stage stochastic robust optimization structured in this paper, increases the total cost of the system, but enhances the conservative scheduling strategy, improves the stability and reliability of the power system, and reduces the risk of decision-making simultaneously.
Keywords: distributed power system; high renewable penetration; fuzzy C-means clustering and clustering comprehensive quality method; two-stage stochastic robust optimization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/2071-1050/11/10/2829/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/10/2829/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:10:p:2829-:d:232211
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().