The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies
Jun-Ho Huh and
Seong-Kyu Kim
Additional contact information
Jun-Ho Huh: Department of Software, Catholic University of Pusan, Busan 46252, Korea
Seong-Kyu Kim: School of Electronic and Electrical Computer Engineering, Sungkyunkwan University, Suwon 110-745, Korea
Sustainability, 2019, vol. 11, issue 11, 1-26
Abstract:
Efficient information flow in an intelligent system is vital for effectively controlling the entire system. Currently, intelligent systems are used in many industries related to energy production, sustainable agriculture/transport, and intelligent building/cities. Information technology (IT) and information and communication technologies (ICT) play vital roles in introducing technical or technological innovation in these industries as well as establishing a collaborative network. Also, the digitization of existing systems has been quite effective at creating a sustainable global environment as it allows more efficient and well-balanced control of socio-economic factors. However, it has become clear that adopting an intelligent system to achieve innovation, sustainability, and safety may well depend on the quality of the algorithms to be used for that very system. Despite recent controversies, new and renewable energies are considered as a realistic alternative to fossil fuels, which have been integral to modern industries but are regarded as a cause of environmental or economic problems, not to mention their limited deposits. Therefore, since renewable energies will gradually replace existing energy sources but require more time to be fully available, it is essential to find a method of managing them in a fair and transparent way. The United States, Japan, and some European countries are attempting to achieve such a goal by utilizing a blockchain system, but the issues pertaining to its functionality, security, or efficiency have yet to be addressed. This study introduces a viable consensus algorithm (Hyper Delegation Proof of Randomness, or HDPoR algorithm) for blockchain and attempts to validate its parallel computing capability through simulations. This study also attempts to design an efficient but secure peer-to-peer (P2P) transaction service model for these energies for the future where blockchain-based systems will hold a key position in the digitalized world. As its main contribution, this study introduces an effective method of applying blockchain to a new and renewable energy transaction system by presenting a consensus algorithm that can improve its infrastructure and performance.
Keywords: blockchain; whitechain; authentication; BoT; M2M; renewable energy; smart grid; computer architecture; software; Java Android; Java JSON; Gob (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.mdpi.com/2071-1050/11/11/3184/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/11/3184/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:11:p:3184-:d:237829
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().