Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region
Wei Yang and
Junnian Song
Additional contact information
Wei Yang: College of New Energy and Environment, Jilin University, Changchun 130012, China
Junnian Song: College of New Energy and Environment, Jilin University, Changchun 130012, China
Sustainability, 2019, vol. 11, issue 14, 1-15
Abstract:
Water pollution is still an obstacle on the way towards sustainable development, especially for some undeveloped regions in China. To formulate policies for water pollution control from multiple perspectives, it is significant to holistically investigate how final demand purchases trigger water pollutant discharge in the production process. With Jilin Province as an empirical study area, the final production and consumption attributions of chemical oxygen demand (COD) discharge within the input–output framework are measured. By employing structural pass analysis and mapping approaches, the supply chain linkages between the two attributions of COD discharge are illustrated. The embodied flows of COD discharge across sectors through the supply chains are exhaustively revealed. The results show that the exports drive 70.23% of the total COD discharge. Animal production (S2) is the dominant contributor to COD discharge from both production and consumption perspectives. Final demand on the products of Foods & tobacco products (S8), Sawmills & furniture , and Construction largely induces COD discharge at higher production layers. In contrast, final demand on S2’s products mainly drives direct COD discharge (96.04%). S2 and S8 are the two key sectors in the supply chains, which provide other sectors with pollution-intensive products as intermediate inputs. The findings indicate that the export of S2’s products should be largely cut down, along with adjustment of the export structure. Innovations of production technologies and improvement of end-of-pipe abatement abilities for S2 and S8 should be facilitated. Besides, cutting capacity or reducing investment on these two sectors should be propelled.
Keywords: input–output analysis; embodied discharge flows; structure path analysis; water pollutant discharge; production and consumption attributions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/11/14/3774/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/14/3774/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:14:p:3774-:d:247067
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().