EconPapers    
Economics at your fingertips  
 

Integrating Qualitative Comparative Analysis and Support Vector Machine Methods to Reduce Passengers’ Resistance to Biometric E-Gates for Sustainable Airport Operations

Cheong Kim, Francis Joseph Costello and Kun Chang Lee
Additional contact information
Cheong Kim: SKK Business School, Sungkyunkwan University, Seoul 03063, Korea
Francis Joseph Costello: SKK Business School, Sungkyunkwan University, Seoul 03063, Korea
Kun Chang Lee: SKK Business School, Sungkyunkwan University, Seoul 03063, Korea

Sustainability, 2019, vol. 11, issue 19, 1-22

Abstract: For the sake of maintaining sustainable airport operations, biometric e-gates security systems started receiving significant attention from managers of airports around the world. Therefore, how to reduce flight passengers’ perceived resistance to the biometric e-gates security system became much more important than ever. In this sense, the purpose of this study is to analyze the factors which contribute to passenger’s resistance to adopt biometric e-gate technology within the airport security setting. Our focus lies on exploring the effects that perceived risks and benefits as well as user characteristics and propagation mechanisms had on causing such resistance. With survey data from 339 airport users, a support vector machine (SVM) model was implemented to provide a tool for classifying resistance causes correctly, and csQCA (crisp set Qualitative Comparative Analysis) was implemented in order to understand the complex underlying causes. The results showed that the presence of perceived risks and the absence of perceived benefits were the main contributing factors, with propagation mechanisms also showing a significant effect on weak and strong resistance. This study is distinct in that it has attempted to explore innovation adoption through the lens of resistance and in doing so has uncovered important complex causation conditions that need to be considered before service quality can be enhanced within airports. This study’s implications should therefore help steer airport managers in the right direction towards maintaining service quality while implementing sustainable new technologies within their current airport security ecosystem.

Keywords: sustainable airport operation; biometric e-gate security; machine learning; support vector machine (SVM); ensemble classifiers (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/19/5349/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/19/5349/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:19:p:5349-:d:271461

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5349-:d:271461